Aging: ROS or TOR
نویسندگان
چکیده
منابع مشابه
P66SHC and Ageing: ROS and TOR?
Both Reactive Oxygen Species (ROS) and hyperactivation of the nutrient-sensing mTOR/S6 kinase cascade have been linked to aging and age-related diseases as well as to the anti-aging effect of calorie restriction. Recent findings that the pro-aging and pro-oxidant molecule p66shc contributes to S6K activation by nutrients and promotes insulin resistance and diabetes in mice may provide an answer...
متن کاملROS in Aging Caenorhabditis elegans: Damage or Signaling?
Many insights into the mechanisms and signaling pathways underlying aging have resulted from research on the nematode Caenorhabditis elegans. In this paper, we discuss the recent findings that emerged using this model organism concerning the role of reactive oxygen species (ROS) in the aging process. The accrual of oxidative stress and damage has been the predominant mechanistic explanation for...
متن کاملGCN2 and TOR converge on aging
ensure the survival of an organism in periods of food unavailability. Two evolutionarily conserved, nutrient-sensing signaling pathways that promote stress adaptation following starvation are the general amino acid control pathway that activates GCN2 kinase and the target of rapamycin (TOR) kinase pathway [1]. In response to amino acid deprivation GCN2 is activated, upon binding of uncharged tR...
متن کاملTOR-dependent cerebrovascular aging in Alzheimer’s disease
Increasing evidence suggests that vascular dysfunction, a universal feature of aging, mechanistically contributes to the onset and pathogenesis of neurological diseases of aging. It was recently discovered that attenuating activity of the mammalian/mechanistic target of rapamycin (mTOR) extends both lifeand health-span in mice by delaying aging. Here we review current evidence for a critical ro...
متن کاملTOR‐mediated regulation of metabolism in aging
Cellular metabolism is regulated by the mTOR kinase, a key component of the molecular nutrient sensor pathway that plays a central role in cellular survival and aging. The mTOR pathway promotes protein and lipid synthesis and inhibits autophagy, a process known for its contribution to longevity in several model organisms. The nutrient-sensing pathway is regulated at the lysosomal membrane by a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Cell Cycle
سال: 2008
ISSN: 1538-4101,1551-4005
DOI: 10.4161/cc.7.21.6965